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Marine sediments are composed of…

biogenic silica calcium carbonate

organic matter

and rocks!



OSP: 2002-2003
overlapping deployments
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OSP: 1982 to present (3 depths)

La Perouse Bank: 1986 to present

Alaska Gyre: 1990 to 1992

3 stations in the Western Pacific:
August, 1991 to June, 1992

3 stations along line P:
sporadically from 1995 to 1997

Sediment-trap moorings deployed by IOS
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Ocean Station PAPAOcean Station PAPA

Alaska Gyre and North Pacific Western GyreAlaska Gyre and North Pacific Western Gyre

Line P with emphasis at La Line P with emphasis at La PerousePerouse BankBank



200 m

1000 m

3800 m

1 year of fluxes from OSP
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characterising seasonality and “filling gaps”
to generate a single time-series



200 m fluxes at OSP
sorted by Julian day
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1000 m fluxes at OSP
sorted by Julian day
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3800 m fluxes at OSP
sorted by Julian day
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For each constituent, maximum 
correlation between 1000 m and 
3800 m occurred at a 12-16 day 
shift, which is close to the average 
deployment period.

Material took ~8 to 24 days to sink 
2800 m, for sinking rates of about 
100 to 400 m d-1.

The shift for CaCO3 (12 days) was 
less than the shift for TDW, BSi
and POC (16 days).  Is CaCO3
sinking faster than BSi, and is 
POC associated with BSi moreso
than with CaCO3?

TIME-LAG IN FLUX BETWEEN
SHALLOW AND DEEP TRAPS

Correlations (lower fig) were determined
by shifting the entire time series, not the
seasonally averaged fluxes as implied by
the upper figure.
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total dry weight flux at OSP
with 16 day shift between

1000 m and 3800 m

seasonally averaged
change in flux

with depth
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biogenic silica flux at OSP
with 16 day shift between

1000 m and 3800 m

seasonally averaged
change in flux

with depth
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CaCO3 flux at OSP
with 12 day shift between

1000 m and 3800 m

seasonally averaged
change in flux

with depth
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POC flux at OSP
with 16 day shift between

1000 m and 3800 m

seasonally averaged
change in flux

with depth
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similar double peak but different
remineralisation dynamics than
presented yesterday at HOTS



1000 m fluxes
at OSP with merged

3800 m fluxes
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CONCERNS and ONGOING WORK

1. Large anomalies in general.  Need to average fluxes over longer periods?
How long?

2. Large anomalies in winter.  Longer averaging?
3. 1988 is a period when 3800 m fluxes were translated to 1000 m.

Need to assure 1988 anomaly exists relative to the 3800 m time-series.

La Niña

El Niño



200 m fluxes at OSP
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OSP conclusionsOSP conclusions

The seasonal cycle of flux at OSP occurs with spring and The seasonal cycle of flux at OSP occurs with spring and 
summer peaks in the fluxes of summer peaks in the fluxes of BSiBSi and POC, but only a and POC, but only a 
spring peak in the flux of CaCOspring peak in the flux of CaCO33..
Particles sink at rates of 100Particles sink at rates of 100--400 m d400 m d--11 below 1000 m, with below 1000 m, with 
the possibility CaCOthe possibility CaCO33 sinks faster than sinks faster than BSiBSi and POC.and POC.
POC follows POC follows BSiBSi more closely than it follows CaCOmore closely than it follows CaCO33..
The time series from OSP is long enough for correlations The time series from OSP is long enough for correlations 
with SOI and PDO.with SOI and PDO. Preliminary analysis shows a greater Preliminary analysis shows a greater 
predominance of diatoms during La Nipredominance of diatoms during La Niñña and a and 
coccolithophoridscoccolithophorids during El Niduring El Niñño, consistent with Wong o, consistent with Wong 
and Crawford (2002).and Crawford (2002).
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Ocean Station PAPAOcean Station PAPA

Alaska Gyre and North Pacific Alaska Gyre and North Pacific 
Western GyreWestern Gyre

Line P with emphasis at La Line P with emphasis at La PerousePerouse BankBank



Alaska Gyre: 1990 to 1992
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3 stations in the Western Pacific
August, 1991 to June, 1992
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sediment composition
at deep traps

W Pacific
4300 m – 5300 m
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Alaska Gyre and North Pacific Western GyreAlaska Gyre and North Pacific Western Gyre

Line P with emphasis atLine P with emphasis at
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Resuspended fluxes at La Perouse Bank



no signal of primary
production in the bulk flux
at La Perouse Bank, and

up to 75% of the
sediment was lithogenic.

biogenic sediment =
BSi + CaCO3 + 1.85 (POC)

lithogenic sediment =
total - biogenic

Jan  Feb Mar Apr May Jun  Jul  Aug  Sep  Oct  Nov Dec

biogenic
mg m-2 d-1

0

500

1000

TDW
mg m-2 d-1

0

500

1000

1500

2000
Jan  Feb Mar Apr May Jun  Jul  Aug  Sep  Oct  Nov Dec

lithogenic

mg m-2 d-1

0

500

1000



TDW (mg m-2 d-1)

0 500 1000 1500 2000

%
lit

ho
ge

ni
c

0

20

40

60

80

100

The composition of resuspended
sediment was modelled after the
samples where fluxes were
more than 65% lithogenic and the
total flux was > 900 mg m-2 d-1

the mean composition of
these samples was:

73% lithogenic
13% biogenic silica
8.3% CaCO3
3.5% POC

These were all in the winter
when the “downward” flux
would have been minimal.

Resuspended sediment at La Perouse Bank



The downward flux (total – resuspended) at La Perouse Bank
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but sorted by Julian day…
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conclusionsconclusions

Fluxes in the Alaska Gyre at 55Fluxes in the Alaska Gyre at 55ooN were similar in N were similar in 
magnitude and composition to fluxes at OSP.magnitude and composition to fluxes at OSP.
Fluxes at 3 stations west of the dateline were composed Fluxes at 3 stations west of the dateline were composed 
almost entirely of almost entirely of BSiBSi.  .  Total fluxes were very low near Total fluxes were very low near 
the dateline but in the NW, ~3x higher than in the the dateline but in the NW, ~3x higher than in the 
eastern North Pacific.eastern North Pacific.
Fluxes along Line P decreased with distance from the Fluxes along Line P decreased with distance from the 
coast.  coast.  The “downward” flux at La The “downward” flux at La PerousePerouse Bank shows Bank shows 
spingsping and summer peaks similar to those at OSP.and summer peaks similar to those at OSP.
Highest carbonate fluxes throughout the North Pacific Highest carbonate fluxes throughout the North Pacific 
were measured at P12 and P16.were measured at P12 and P16.
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This slide will contain…This slide will contain…

Four figures (one for each constituent), exactly Four figures (one for each constituent), exactly 
like upper right of the previous four slides, but like upper right of the previous four slides, but 
with 200 m fluxes along with 1000 m and 3800 with 200 m fluxes along with 1000 m and 3800 
m.  Point will be that the same signal exists at m.  Point will be that the same signal exists at 
200 m.  A lot less attenuation than expected for 200 m.  A lot less attenuation than expected for 
the 200 m the 200 m –– 1000 m depth interval.  There are 1000 m depth interval.  There are 
some analytical issues we’re dealing with, so we some analytical issues we’re dealing with, so we 
haven’t yet pushed the 200 m time series haven’t yet pushed the 200 m time series 
through the calculations.through the calculations.
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La Perouse Bank: 1986 to present
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