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Marine sediments are composed of...

biogenic silica calcium carbonate
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and rocks!
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Sediment-trap moorings deployed by I0S
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OSP: 1982 to present (3 depths) 3 stations in the Western Pacific:
August, 1991 to June, 1992

La Perouse Bank: 1986 to present
3 stations along line P:

Alaska Gyre: 1990 to 1992 sporadically from 1995 to 1997
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characterising seasonality and “filling gaps™
to generate a single time-series
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200 m fluxes at OSP
sorted by Julian day

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 1 1 1 1 1 1 1 1 1 1
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

7.7 years of data




TDW (mg m2 dh

POC (mg m2 dh

CaCO, (mg m dh

600

400

[\
)
(=)

(U8)
o O

\o}
S

—
S

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

J
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

11

[S—
e

=
S
S
]
a
Z
=
Q
=
=
=
o
0}
o

1000 m fluxes at OSP
sorted by Julian day
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3800 m fluxes at OSP
sorted by Julian day
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TIME-LAG IN FLUX BETWEEN
SHALLOW AND DEEP TRAPS

For each constituent, maximum
correlation between 1000 m and
3800 m occurred at a 12-16 day
shift, which is close to the average
deployment period.

Material took ~8 to 24 days to sink
2800 m, for sinking rates of about
100 to 400 m d-.

The shift for CaCO, (12 days) was
less than the shift for TDW, BSi
and POC (16 days). Is CaCO,
sinking faster than BSi, and is
POC associated with BSi moreso
than with CaCO,?

Correlations (lower fig) were determined
by shifting the entire time series, not the
seasonally averaged fluxes as implied by
the upper figure.
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1000 m POC
3800 m POC

POC (mg m> d'l)
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POC flux at OSP
with 16 day shift between
1000 m and 3800 m

Shoaling of seasonal thermocline
in Aug = high primary production
(D Crawford, pers. comm.)

similar double peak but different
remineralisation dynamics than
presented yesterday at HOTS

seasonally averaged
change in flux
with depth
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Southern Oscillation
Index

Pacific Decadal
Oscillation

BSi flux
anomaly

CaCO, flux
anomaly

POC flux
anomaly

1990 2000




Southern
Oscillation
Index

BSi/CaCO,
flux
anomaly

1982 1990 2000

CONCERNS and ONGOING WORK

1. Large anomalies in general. Need to average fluxes over longer periods?
How long?

2. Large anomalies in winter. Longer averaging?

3. 1988 is a period when 3800 m fluxes were translated to 1000 m.
Need to assure 1988 anomaly exists relative to the 3800 m time-series.
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OSP conclusions

B The seasonal cycle of flux at OSP occurs with spring and
summer peaks in the fluxes ot BSt and POC, but only a
spring peak in the flux of CaCO,.

m Particles sink at rates of 100-400 m d-! below 1000 m, with
the possibility CaCO)j; sinks faster than BS1 and POC.

B POC follows BSi more closely than it follows CaCOj,.

B The time sertes from OSP is long enough for correlations
with SOI and PDO. Preliminary analysis shows a greater
predominance of diatoms during I.a Nifa and
coccolithophorids during El Nifio, consistent with Wong
and Crawford (2002).
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Alaska Gyre: 1990 to 1992
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3 stations 1in the Western Pacific
August, 1991 to June, 1992
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North Pacific Western Gyre sediment-trap fluxes
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sediment composition
at deep traps

W Pacific
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Resuspended fluxes at La Perouse Bank

—— —_ ———

> 2 A 7 .. e 18l ol capllve M uapdd wilbnntnsith: vt '_; -y - I . |
UG AA A AR LSt o
ad e ' 7% ‘1 AF

| _ 0 T3

—



. . Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
no 31gnal of primary

production in the bulk flux
at La Perouse Bank, and
up to 75% of the
sediment was lithogenic.
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Resuspended sediment at LLa Perouse Bank

The composition of resuspended
sediment was modelled after the
samples where fluxes were

more than 65% lithogenic and the
total flux was > 900 mg m~ d-!

the mean composition of
these samples was:
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73% lithogenic
13% biogenic silica
8.3% CaCOQO,

3.5% POC
These werf all 1in the ,\,zvmter 500 1000 1500
when the “downward” flux P
TDW (mg m™~= d )

would have been minimal.



The downward flux (total — resuspended) at La Perouse Bank
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compilation from Line P

trap: 3450 m
bottom: 3890 m  trap: 3100 m

bottom: 3550 m trap: 2700 m
P 2 O bottom: 3300 m
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fluxes were recorded sporadically along line P
between 1995 and 1998

station P 12
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Summary of fluxes in the North Pacific:
mean fluxes measured at deepest traps at each station

—  distance from

Vancouver Island

AG P20 P12
SNSRI — tfotal flux at

La Perouse Bank

\\_ —0—0\‘,‘/‘_‘ —0_ “downward”

flux

maximum coccolithophorid
biomass along Line P

periodically occurs at P12

(M Lipsen, pers. comm.).

POC (mg m_2 d_l) CaCO3 (mg m_2 d_l) BSi (mg m_2 d_l) TDW (mg m_2 d-l)




—  distance from
Vancouver Island

AG P20 PI2
OSP P16 P4

highest BSi1
contributions occur
In the Western
Pacific

highest carbonate

S contribution occurs

g from P12 into the

Alaska Gyre
Foram?

continuous plankton
Recorder might help
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conclusions

B Fluxes in the Alaska Gyre at 55°N were similar in
magnitude and composition to fluxes at OSP.

m Fluxes at 3 stations west of the dateline were composed
almost entirely of BSi. Total fluxes were very low near

the dateline but in the NW, ~3x higher than in the
eastern North Pacific.

m [luxes along Line P decreased with distance from the
coast. The “downward” flux at [.a Perouse Bank shows
sping and summer peaks similar to those at OSP.
Highest carbonate fluxes throughout the North Pacific
were measured at P12 and P16.




light at OSP: 1960-1980

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1t 1 1 1t 1 1T 1§ 1T 711

i
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec




This slide will contain...

m Four figures (one for each constituent), exactly
like upper right of the previous four slides, but
with 200 m fluxes along with 1000 m and 3800
m. Point will be that the same signal exists at
200 m. A lot less attenuation than expected for
the 200 m — 1000 m depth interval. There are
some analytical issues we’re dealing with, so we
haven’t yet pushed the 200 m time series
through the calculations.
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LLa Perouse Bank: 1986 to present
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Southern Oscillation
Index

Pacific Decadal
Oscillation

BSi/CaCO, flux
anomaly

POC/CaCO,
flux anomaly

BSI/POC flux
anomaly
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